This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Quantification Analysis of Human α - and δ -Globin Genes. Mutations in 5'-Splice Junction Sequence and α - and δ - Thalassemias

Yôichi Iidaª

^a Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan

To cite this Article Iida, Yôichi(1992) 'Quantification Analysis of Human α - and δ-Globin Genes. Mutations in 5'-Splice Junction Sequence and α - and δ- Thalassemias', Nucleosides, Nucleotides and Nucleic Acids, 11: 2, 311 — 317

To link to this Article: DOI: 10.1080/07328319208021705 URL: http://dx.doi.org/10.1080/07328319208021705

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

QUANTIFICATION ANALYSIS OF HUMAN α - AND $\mathcal E$ -GLOBIN GENES. MUTATIONS IN 5'-SPLICE JUNCTION SEQUENCE AND α - AND $\mathcal E$ -THALASSEMIAS

Yoichi Iida Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060, Japan

Abstract: Nucleotide sequences of the exon-intron junction in human α - and δ -globin genes were analyzed by the quantification method proposed previously. We further studied several mutants of α - and δ -thalassemias, where mutational changes occur around the 5'-splice junction of the first intron. These changes abolish the normal 5'-splice site completely, but activate a cryptic site lying in the first exon. Such behaviours were well explained in terms of our quantification analysis.

Most of the mammalian genes are interrupted by introns, which are removed from mRNA precursors (pre-mRNAs) by the RNA splicing mechanism. A number of genetic diseases have been known to come from defects in RNA splicing, by which abnormal mRNAs and proteins are Thalassemia is one of genetic diseases defects in human globin chain synthesis. 1,2 The discovery that globin genes consist of three exons divided by two introns led to the suggestion that some forms of thalassemia might arise from incorrect splicing of pre-mRNA. As for signals about where to splice, there are consensus sequences around the 5'- and sites of the intron and around the branch point. For example, the 5'-splice signal has been given by a 9-nucleotide consensus sequence, (C or A)AG/GT(A or G)AGT, where the stroke (/) indicates

This paper is dedicated to the memory of Professor Tohru Ueda (Hokkaido University).

312 IIDA

the boundary between exon and intron. 3 One major problem in thalassemia is why certain mutations in the splice signal sequence abolish the normal splice sites completely. These mutations lead to another problem concerning splice site selection. introns, there are several places at which sequences and consensus splice sites but are normally inactive in splicing. they are activated if the authentic splice site is abolished. In this report, we analyzed 5'-splice sequences of the human \propto - and δ -globin genes, and found that the above actually take place in several α - and δ -thalassemia mutants. Using our quantification method, we explained why abnormal splicing occurs in such thalassemia genes.

Method of Quantification Analysis

Quantification method (categorical discriminant analysis) is a mathematical analysis of DNA sequences to measure the 5'-splice signal quantitatively. The method was reported previously, 4^{-6} that its detail is not mentioned here. Taking human α -globin gene as an example, we show the procedure of calculation briefly. The analysis demonstrated that a 9-nucleotide sequence in the consensus region (three nucleotides in exon and six in intron) is almost sufficient to specify the 5'-splice site in pre-mRNA splicing. 6 Then, we constructed two groups of sequence data, as given by TABLE The first group is composed of 155 sets of 9-nucleotide sequences, which are taken from authentic 5'-splice sites in various Sequences of the second group were taken from mammalian genes. ∝-globin pre-mRNA in the following way. First, we start with the 9-nucleotide sequence at the cap site. Next, we progress one nucleotide in the 3'-direction, and take the next 9-nucleotide In this way, we window 9-nucleotide sequences at position of the whole pre-mRNA. In those sequences, however, lie two sequences due to the authentic 5'-splice sites, which belong to the first group. These two are excluded, and the remaining sequences are summarized in the second group (see TABLE 1). Quantification analysis discriminates sequences between the groups most distinctly by a mathematical optimization technique. this process, we can estimate sample score values for each 9nucleotide sequence of the pre-mRNA, where the larger the score, the stronger the 5'-splice signal such a sequence has (for detail of the calculation, see Refs. 4-6).

Analysis of Human α -Globin Pre-mRNA and α -Thalassemia As was mentioned, the human α -globin pre-mRNA is composed of

TABLE 1.	The 9-nucleotide sequence data to be analyzed by
	quantification method

No. (ν)	Group (r)	a Sequence	Gene
1 23 4 :	1	GAGGTGAGG AAGGTGAGC CAGGTGAGT AGGGTGAGT	Human ∝-globin Human β-globin
155 2 :	1 2 2 :	AGGGTGAGC ACTCTTCTGG CTCTTCTGG	Dog insulin Human α-globin
822	2	GTGGGCGC	

a Group 1 is composed of 5'-splice site sequences, while group 2 comprises sequences other than 5'-splice sites. See text and Refs. 4-6 for further details.

three exons and two introns, and there are two positions of a 5'-Hereafter, positions of the junctions are specified by numbering them from the 5'-end of the pre-mRNA. Quantification analysis of the data in TABLE 1 demonstrated that, among all of the 9-nucleotide sequences in the entire pre-mRNA, AAG/GTGAGC (position 454/455), GAG/GTGAGG (132/133), GGG/GTAAGG (83/84) and AAG/GTCGGC (88/89) give the highest sample scores of 40.8717, 34.0718, 32.8155 and 27.5589, respectively (See TABLE 2). The former two sequences coincide well with the authentic 5'-splice site sequences of the second and first introns, respectively. The third and fourth sequences, GGG/GTAAGG (83/84) and AAG/GTCGGC (88/89), resemble the consensus sequence, but the normal gene does not undergo splicing at these positions. This is because the scores of 32.8155 and 27.5589 third and fourth sequences are smaller than 34.0718 of GAG/GTGAGG (132/133) at the authentic 5'-splice site of the first Since those three sequences lie rather close to each other and share a common 3'-splice site of the first intron at (249/250), it appears that the GAG/GTGAGG sequence gets the 5'-splice signal after competition. This view is strongly supported by the following experiments with the a-thalassemia gene. Felber et al. reported the α -thalassemia mutant gene, 7 where a pentanucleotide deletion occurs at the underlined position of GAG/GTGAGG (132/133) of the

314 IIDA

TABLE 2. The results of quantification analysis and sample scores of 9-nucleotide sequences in human α - and δ -globin genes and their thalassemia genes ^a

Gene	Position	Sequence	Sample Score
∝-Globin	83/84 88/89 132/133 454/455	GGG/GTAAGG AAG/GTGGG GAG/GTGAGG AAG/GTGAGC	32.8155 27.5588 34.8717
∝-Thalassemia	132/133	GAG/GCTCCC	-1.2616
\mathcal{S} -Globin	126/127 493/494	GTG/GTGAGG AGG/GTGAGT	27:7026 36:3472
δ -Thalassemia	142/143	CAG/GCTGGT	22.9328
δ -Thalassemia	126/127	GTG/GTGAGT	32.3851

a See text for further details.

authentic 5'-splice sequence of the first intron. Expression of this mutant gene revealed that the deletion abolishes the normal 5'splice site completely but that alternative splicing occurs at the cryptic splice site of GGG/GTAAGG (83/84). Such a splicing led to abnormal mRNA, giving severe &-thalassemia phenotype. this abnormal splicing in terms of our sample scheme. The pentanucleotide deletion changes the authentic 5'splice site sequence, GAG/GTGAGG, into GAG/GCTCCC. This change decreases dramatically the score of 34.0718 of the authentic into - 1.2616 (see TABLE 2). Then, the altered score smaller than 32.8155 of the cryptic site of GGG/GTAAGG at position (83/84). However, the latter score is larger than the next largest score 27.5589 of the sequence AAG/GTCGGC at position (88/89). Therefore, these sample scores can well explain why the authentic site is abolished and the cryptic site at (83/84) is activated as the alternative 5'-splice site. Note that, in both of the normal and abnormal splicings, the 5'-splice signal sequence overcomes, magnitude of sample score, the other sequences which resemble the consensus sequence.

Analysis of Human δ -Globin Pre-mRNA and δ -Thalassemia The human δ -globin is the non- α chain of HbA $_2$ (α $_2$ δ $_2$), the minor component of adult human hemoglobin. Also in the δ -globin gene, 1,8 the pre-mRNA is composed of three exons and two introns, and there are two positions of 5'-splice site. The 9-nucleotide sequence at the 5'-splice site of the first intron is CAG/GTTGGT at position (142/143), while that of the second intron is AGG/GTGAGT at (493/494). As is similar to TABLE 1, we constructed two groups of the sequence data, where sequences of the seond group are taken from the δ -globin pre-mRNA, and 1631 sets of 9-nucleotide sequences are summarized in this group. Quantification analysis showed that, among all of the 9-nucleotide sequences in the entire pre-mRNA, those sequences at positions (493/494) and (142/143) give the highest sample scores of 36.3472 and 31.5675, respectively (see TABLE 2). This is consistent with the finding that they are authentic 5'-splice sequences of the two introns.

On the other hand, at position (126/127), there lies a cryptic GTG/GTGAGG, which resembles the consensus sequence and shows the third highest sample score, 27.7026. However, it is not recognized as the 5'-splice site in the normal gene. This is also explained by our scoring scheme. For the common site of the first intron at (270/271), there lie two potential for the 5'-splice site, the authentic sequence candidates CAG/GTTGGT at (142/143) and the cryptic sequence GTG/GTGAGG at (126/127). In view of their sample scores, the stronger sequence the authentic site gets the 5'-splice signal after competition the normal gene. This view is strongly supported by abnormal splicings observed with two δ -thalassemia mutant genes.

The first example is a single nucleotide substitution $(T \rightarrow C)$ at position 144 within the first intron. 8 This change leads complete loss of splicing at the authentic 5'-splice site and thus to the absence of normal δ -globin mRNA, explaining the phenotype of δ^{O} -thalassemia. Such a substitution changes the authentic nucleotide sequence of the 5'-splice site of the first intron CAG into CAG/GCTGGT. In terms of our scoring, the results in a dramatic decrease of the sample score of the site, 31.5675 into 22.9328, whose value is found to be much smaller than the 27.7026 value of the cryptic sequence GTG/GTGAGG (see TABLE This means that the intensity of the 5'-splice signal of the altered sequence is much weakened, compared to that of the cryptic sequence, and that normal splicing is completely abolished in the mutant. Instead of this, the cryptic splicing may occur at position (126/127).

316

The second example of δ -thalassemia shows a G \rightarrow T substitution at position (132). 8 This place corresponds to the first nucleotide of codon 27, which produces an amino acid change (Ala → Ser). Moreover, the mutation occurs within the 9-nucleotide sequence of above cryptic site, and changes the wild-type the sequence GTG/GTGAGG to GTG/GTGAGT. Then, the sample score increases from 27.7026 to 32.3851, whose value becomes larger than the value of CAG/GTTGGT at the authentic 5'-splice site of intron (see TABLE 2). Therefore, in this mutant, the GTG/GTGAGT sequence gets the 5'-splice signal after competition, and a fraction of RNA transcript is abnormally spliced from this site to the normal 3'-splice site of the first intron. Although the score 32.3851 (GTGGTGAGT) is larger than 31.5676 (CAGGTTGGT), the difference between them (0.8175) is rather small. This implies that splicing occurs not only at (126/127) but also at the authentic splice site of (142/143). This mutant produces some normal mRNA, resulting in δ^{r} -thalassemia. It should be noted that, in case of α -globin gene, the difference between the above-mentioned sample scores for the authentic 5'-splice site (132/133) and the cryptic site (83/84) (=34.0718-32.8155), which is slightly larger than difference (0.8175) observed here in δ^+ -thalassemia. This seems to explain why normal ∝-globin pre-mRNA can be spliced exclusively at the authentic site (132/133), and not at the site (83/84).

In view of the above examples, a quite high sample score is required for a sequence to get the signal, but the sequence is not always selected as 5'-splice site. If two or more such potential sequences of 5'-splice site share a common 3'-splice site, they compete with each other, and the sequence possessing the greatest score gets the 5'-splice signal. If it is destroyed by mutation, the next strongest sequence gets the signal. In this way, whether a potential sequence may get or lose the signal depends on the surrounding sequences.

REFERENCES

- 1. Nienhuis, A. W.; Anagnou, N. P.; Ley, T. J. Blood, 1984, 63, 738.
- Higgs, D. R.; Vickers, M. A.; Wilkie, A. O. M.; Pretorius, I. M.; Jarman, A. P.; Weatherall, D. J. Blood, 1989, 73, 1081.
- 3. Mount, S. M. Nucleic Acids Res., 1982, 10, 459.
- 4. Iida, Y. Comput. Appl. Biosci., 1987, 3, 93.

- 5. Iida, Y. Biochim. Biophys. Acta (Gene Structure and Expression), 1989, 1007, 270.
- 6. Iida, Y. J. Theor. Biol., 1990, 145, 523.
- 7. Felber, B. K.; Orkin, S. H.; Hamer, D. H. Cell, 1982, 29, 895.
- 8. Moi, P.; Paglietti, E.; Sanna, A.; Brancati, C.; Tagarelli, A.; Galanello, R.; Cao, A.; Pirastu, M. Blood, 1988, 72, 530.

Received 8/9/91 Accepted 12/4/91